
670 Chapter 15 Concurrency Control

15.1.4 Implementation of Locking

A lock manager can be implemented as a process that receives messages from
transactions and sends messages in reply. The lock-manager process replies to
lock-request messages with lock-grant messages, or with messages requesting
rollback of the transaction (in case of deadlocks). Unlock messages require only
an acknowledgment in response, but may result in a grant message to another
waiting transaction.

The lock manager uses this data structure: For each data item that is currently
locked, it maintains a linked list of records, one for each request, in the order in
which the requests arrived. It uses a hash table, indexed on the name of a data
item, to find the linked list (if any) for a data item; this table is called the lock
table. Each record of the linked list for a data item notes which transaction made
the request, and what lock mode it requested. The record also notes if the request
has currently been granted.

Figure 15.10 shows an example of a lock table. The table contains locks for
five different data items, I4, I7, I23, I44, and I912. The lock table uses overflow
chaining, so there is a linked list of data items for each entry in the lock table.
There is also a list of transactions that have been granted locks, or are waiting for
locks, for each of the data items. Granted locks are the rectangles filled in a darker
shade, while waiting requests are the rectangles filled in a lighter shade. We have
omitted the lock mode to keep the figure simple. It can be seen, for example, that
T23 has been granted locks on I912 and I7, and is waiting for a lock on I4.

Although the figure does not show it, the lock table should also maintain an
index on transaction identifiers, so that it is possible to determine efficiently the
set of locks held by a given transaction.

The lock manager processes requests this way:

• When a lock request message arrives, it adds a record to the end of the linked
list for the data item, if the linked list is present. Otherwise it creates a new
linked list, containing only the record for the request.

It always grants a lock request on a data item that is not currently locked.
But if the transaction requests a lock on an item on which a lock is currently
held, the lock manager grants the request only if it is compatible with the locks
that are currently held, and all earlier requests have been granted already.
Otherwise the request has to wait.

• When the lock manager receives an unlock message from a transaction, it
deletes the record for that data item in the linked list corresponding to that
transaction. It tests the record that follows, if any, as described in the previous
paragraph, to see if that request can now be granted. If it can, the lock manager
grants that request, and processes the record following it, if any, similarly,
and so on.

• If a transaction aborts, the lock manager deletes any waiting request made
by the transaction. Once the database system has taken appropriate actions
to undo the transaction (see Section 16.3), it releases all locks held by the
aborted transaction.



15.1 Lock-Based Protocols 671

granted

waiting

T8

144

T1 T23

14

T23

17 123

T23 T1 T8 T2

1912

Figure 15.10 Lock table.

This algorithm guarantees freedom from starvation for lock requests, since
a request can never be granted while a request received earlier is waiting to be
granted. We study how to detect and handle deadlocks later, in Section 15.2.2.
Section 17.2.1 describes an alternative implementation—one that uses shared
memory instead of message passing for lock request/grant.

15.1.5 Graph-Based Protocols

As noted in Section 15.1.3, if we wish to develop protocols that are not two phase,
we need additional information on how each transaction will access the database.
There are various models that can give us the additional information, each dif-
fering in the amount of information provided. The simplest model requires that
we have prior knowledge about the order in which the database items will be
accessed. Given such information, it is possible to construct locking protocols that
are not two phase, but that, nevertheless, ensure conflict serializability.

To acquire such prior knowledge, we impose a partial ordering → on the set
D = {d1, d2, . . . , dh} of all data items. If di → d j , then any transaction accessing


